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In closed model universes assumed to bounce at some minimum radius, dissipa- 
tion causes the amplitude of the oscillations to grow. This weU-known fact of 
relativistic cosmology is counterintuitive. Since Newtonian models correspond 
closely to relativistic ones when there is no dissipation, we examine dissipative 
Newtonian models, and note the peculiarly relativistic ideas which must be 
introduced to obtain correct results. 

1. INTRODUCTION 

It has been known since Tolman's (1934) work that dissipative pro- 
cesses cause the oscillations of  a closed model universe which bounces at a 
minimum radius to grow in amplitude from one cycle to the next. This is 
contrary to our experience that dissipative processes, such as those involved 
in the damping of  a harmonic oscillator, lead to a decrease in amplitude. 

Homogeneous Newtonian models without  dissipation correspond 
closely to those of general relativity. This is of  pedagogic value, for one can 
discuss basic cosmological models rigorously without the mechanism of  
Einstein's theory. Here we consider dissipative Newtonian models, discern 
their limits, and point out the peculiarly relativistic concepts which lead to 
Tolman's result. This shows where classical intuition goes astray, and 
makes it possible to present Tolman's result to students familiar only with 
Newtonian mechanics and special relativity. 

2. NEWTONIAN AND RELATIVISTIC C O S M O L O G Y  

Einstein's theory allows three types of  homogeneous and isotropic 
model universes, fiat and positively or negatively curved, and relates the 
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time dependence of the cosmic scale factor to the matter content. It has 
been known for a long time that cosmologies based on Newtonian theory 
give results very similar to those of general relativity. This is no accident, 
but a rigorous consequence of Einstein's theory itself (Callan et al., 1965). 
For a homogeneous universe containing only pressure-free dust, we may 
focus on a spherical portion so small and containing so little mass that it 
can be described by Euclidean geometry and Newtonian physics. We 
obtain an equation which governs the change of the sphere's radius with 
time. This yields a scale factor which will, at any time, give the distance 
between two arbitrary particles in the sphere. But since the model is 
homogeneous, the same scale factor gives the distance between any two 
particles in the entire universe as a function of time. The equation govern- 
ing the dynamics of the small sphere determines the dynamics of the 
cosmos as a whole. 

If  the radius of the sphere is a(t) and the constant mass within it M, 
a test particle on its surface will move in accord with the Newtonian energy 
equation 

(1/2)(da/dt )  2 - G M / a  = W = const (1) 

The integration constant HI, the particle's energy divided by its mass, 
will be critical in our discussion. It would be arbitrary for a finite gas 
sphere, but not for an entire universe. If  the displacement between any two 
particles at the instant when a = 1 is r, that at time t will be a(t)r. We will 
consider the vector r to have dimensionless components, so that a will 
continue to have units of length (McVittie, 1965). a(t) specifies the state of 
the universe, and cannot depend on a property of only par t  of it such as M, 
but solely on the cosmic time t, the uniform density, and universal 
constants. 141, which enters into the solution for a(t), must be expressible in 
terms of  a fixed value of the cosmic time to, the density Po at that time, and 
the gravitational constant G, since those are the only constants in the 
Newtonian formulation of the problem. But an equation of the form 
W = t~pPoG ~ cannot be dimensionally correct. W is therefore an indepen- 

dent universal constant with the dimensions of a squared speed, but we 
cannot say more than this within the confines of  Newtonian theory. [This 
argument may be compared with one in Milne's (1948) theory.] 

Thus Newtonian theory is incomplete. It does not require much 
familiarity with relativity to guess that W must be proportional to c 2 to 
give the correct correspondence. In fact, Einstein's theory yields a result 
very similar to (1), the Friedman equation: 

( 1/2)(da/dt) 2 _ G M / a  = - kc  2/2 (2) 

By an appropriate choice of units, the value of the constant k can be made 



Dissipative Newtonian Cosmology 1 0 4 9  

to be + 1, - 1 ,  or 0. The corresponding solutions represent, respectively, 
spaces of constant positive or negative curvature or flat space. In the first 
case, the universe expands to a maximum size and then contracts, while a(t) 

always increases for k = - 1 or 0. In Newtonian theory, these are the same 
types of behavior one could have in shooting a rocket away from a planet 
with an initial speed less than, greater than, or equal to escape speed. 

We are interested in spherical spaces for which the solution of (2) is 

a = ( G M / c 2 ) ( 1  - c o s  l~)  

(3) 
t = (GM/c3)(qJ  - sin ~,) 

which are the parametric equations of a cycloid. Here M is an abbreviation 
for 4~zpoao3/3, quantities being evaluated at some arbitrary time t 0. As we 
have seen, the solution cannot involve properties peculiar to a limited 
portion of the universe. 

The periodic character of (3) has led to speculation about eternally 
oscillating universes. One difficulty with such ideas is the existence of 
space-time singularities at points given by the cusps of the cycloid. More 
precisely, the singular "points" with t = 2 n n G M / c  3 and a = 0 do not exis t :  

The space-time manifold is incomplete (Hawking and Ellis, 1973). 
Modifications of Einstein's classical theory of gravitation, such as 

quantization, may change the solution near the cusps, so that the universe 
bounces from a contracting to an expanding phase with no singularity. The 
nature of such a bounce is not our concern here, and we simply assume 
that it can take place and that the basic parameters of physics (e.g., G) are 
not changed in the bounce, so that we can talk meaningfully about an 
oscillating universe. 

There is a Newtonian analogy for such a model. We noted that the 
dynamics of a universe with W < 0 corresponds to the motion of an object 
projected at less than escape speed from the surface of a planet. If, on 
return, it collides elastically with the planet's surface, the resulting motion 
would be like that of a model universe which bounces at some minimum 
radius. 

3. CLOSED UNIVERSES WITH DISSIPATION 

Matters are not so simple when dissipation is present. Tolman showed 
that the behavior of a closed universe is changed significantly, and in a way 
contrary to classical intuition, when processes which are not isentropic take 
place within it. Such processes must be taken into account if our models 
are to be at all realistic, and especially if we want to discuss the possibility 
of eternally oscillating universes. 



1050 Murphy 

The effect of irreversible thermodynamic processes on cosmological 
models has been discussed by a number of authors (e.g., Tolman, 1934; 
Treciokas and Ellis, 1971; Nightingale, 1973; Landsberg and Park, 1975; 
Neugebauer and Meier, 1976). A major result is that, in closed universes of 
the type we have been considering, there is a secular change in the 
amplitude of the a versus t curve from one cycle to the next. But this does 
not happen in the way one would first expect. A bouncing ball will rise to 
the same height on each bounce if its collisions with the ground are elastic, 
but the height will decrease if energy is dissipated in the collisions. 
Similarly, one would expect that the amplitude of cosmic oscillations would 
be damped out. But this is not the case. The amplitude actually increases. 
A closed universe in which dissipative processes take place grows with time. 

Why does this counterintuitive behavior occur? Since it is possible to 
derive the equations describing nondissipative models in a rigorous way 
from Newtonian theory, we might hope that this could also be the case 
with dissipation. This hope cannot be fulfilled completely because relativis- 
tic considerations are essential at a couple of points. We have already noted 
that relativity is needed to give the value of W in (1). We must also go 
beyond Newtonian concepts to recognize that all energy has mass, and acts 
as a source of gravitational fields. Thus (2) can be written 

(da/dt) 2 - 2GE/c2a + kc 2 = 0 (4) 

with E the total energy within a sphere of radius a. 
The first and second laws of thermodynamics for pressure-free dust 

with no chemical reactions give dE = T dS. If dS > 0, then dE > 0, so a 
monotonic increase in entropy means that E, and thus the active gravita- 
tional mass, will increase. 

The simplest example of the processes we are considering is bulk 
viscosity from transfer of energy between different microscopic degrees of 
freedom (Landau and Lifshitz, 1959). It will be effective in pure expansion 
or contraction of a fluid, even with no shear, and has the effect of a 
negative pressure in the Einstein equations. In expansion, this negative 
pressure does negative work, and thus creates energy. A model in which 
this effect is dominant exhibits the de Sitter expansion of the steady-state or 
inflationary cosmologies (McCrea, 1951; Murphy, 1973; Guth, 1980). 

In our universe, heat conduction and shear viscosity are more impor- 
tant than bulk viscosity. But the latter provides a simple way of averaging 
the net thermodynamic and gravitational effects of heat conduction or 
shear viscosity without having to take into account explicitly the inhomo- 
geneities or anisotropies which give rise to them. 

All such processes affect the expansion of the universe. In (4), E is now 
a monotonically increasing function of time, and we take k = + 1. If t~ and 
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t2 are successive times at which da/dt  = 0, so that the expansion has 
reached a local maximum, then, since E2 > El, a2 = 2GE2/c 4 > 2GEl/C 4 = 

a~. Thus the maximum scale factor will reach successively larger and larger 
values. This is Tolman's result. Note also that, in each cycle, the curve of 
a versus t is steeper during contraction than in the preceding expansion: 
For a given value of a, (da/dt) 2 is greater after the maximum is reached 
than before. 

It is important to note the role of k. It corresponds to the Newtonian 
energy per unit mass of a particle on the edge of our small sphere, but is 
not directly related to the total energy E inside the sphere. Pure Newtonian 
theory is misleading when we consider dissipative universes, k, and hence 
W, do not change, as would the Newtonian energy of a planet orbiting a 
star whose mass grows by accretion. 

There cannot, then, be a strict recurrence of cosmic states when in the 
presence of dissipation. It is even possible for a model universe after a 
certain number of oscillations to "take off" on a final expansion and never 
recontract. This can be shown for the case of bulk viscosity, which 
produces an equivalent pressure p ' = - ~ ( 1 / V ) d V / d t ,  ~ being the bulk 
viscosity coefficient and V the fluid volume. Then 

dE/d t  = 12n~a(da/dt) 2 (5) 

is the rate of change of internal energy. Solution of (4) and (5) together will 
give E and a as functions of time. Neugebauer and Meier (1976) transform 
these equations into a single nonlinear second-order equation and show 
that, if ~ > c4/24~Ga(da/dt) at some time in an expanding phase, then a will 
have no finite maximum. Here we simply note that we can find an 
unbounded asymptotic solution of (4) and (5), valid for large values of t. 
Specifically, we try 

a = A exp(~t), E = B exp(flt) (6) 

with A, B, ~, and /~ constants. For sufficiently large times, the curvature 
term in (4) can be neglected and we find that (4) and (5) are satisfied if 
13 = 3o~ = 24rcG~/c 2. The internal energy is proportional to the volume. The 
exponential relation between a and t is, of course, that of the de Sitter 
solution which obtains in the steady-state or inflationary cosmologies. 

4. CONCLUSIONS 

Why do dissipative universes grow, when our experience of such 
processes is that they damp out oscillatory motions? In idealized homoge- 
neous universes, such processes do not act directly as friction to remove 
energy from large-scale motion. There is no "outside" to which energy can 
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be removed.  The increase in internal energy means an increase in active 
gravitat ional  mass. This, combined with the constancy o f  k required by the 
homogenei ty  o f  the universe, leads to an increase in amplitude: E / a  must  be 
the same at each maximum,  and area x must  increase because E does. 

Philosophical and religious tradit ions take different positions on a 
continual  recurrence o f  the world (Eliade, 1954). One may  or  may  not  feel 
that  the results o f  scientific cosmology  are germane to such considerations,  
but  it seems well for those concerned about  such matters to know what  
those results are. The approach  o f  this paper,  which remains as close as 
possible to that  o f  Newton ian  mechanics,  should help to make  these results 
accessible to a wider audience. 
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